Showing posts with label real analysis. Show all posts
Showing posts with label real analysis. Show all posts

Monday, July 28, 2008

An interesting maths proof (to me anyway).

This is a comment I left on a blog but the comment box had no preview button and my comment came out kinda mangled, so I'm posting it here.

First of all, it's a long time since I proved anything so I may be wrong. Secondly, the markup is probably going to be terrible, there seems to be no preview button and I can't find wordpress's help section for markup. Finally, apologies if this is straying too far from the original idea of proof automation but I think this answers the question of whether this is true for Complex also. I can't really claim that this proof is discoverable by pattern matching as it's not really an epsilon-delta proof. That said, if I haven't made a mistake, the problem becomes "easy" if you consider a compactification of R and maybe looking at compactifications is a reasonable strategy for theorem provers.

Anyway, I think you can capture all of the fiddly parts and the proof-by-contradiction inside the Heine-Borel Theorem instead of using the Baire Category Theorem, which seems to be a bit more heavy-weight.

The essence is to show that for any δ > 0, there is a single Nδ such that |f(nX)| < δ for X ∈ [0,1] and n > Nδ. The conclusion follows from the fact that any Real > Nδ is something in [0,1] times an integer at least as big as N and therefore |f| will be < δ for this Real too.

Let X ∈ Real. We are given that f(nX) -> 0 as n -> ∞. More formally, ∀ δ > 0, ∀ X ∈ Real, ∃ Nδ,X ∈ Natural such that |f(nX)| < δ ∀ n > Nδ,X. Since f(X) is continuous there is an open set, Oδ,X containing X such that |f(Nδ,X y)| < δ ∀ y ∈ Oδ,X (it is the inverse image of (-δ, δ)).

For a fixed δ, {Oδ,X: X ∈ [0,1]} gives us an open cover of [0,1] and Heine-Borel tells us that there is a finite subcover. This means we have a finite set of Oδ,X, each with an Nδ,X and we can take the maximum Nδ,X and call it Nδ. This is a Natural such that |f(nX)| < δ ∀ X ∈ [0,1], ∀ n > Nδ.

Now let X ∈ Real, X > Nδ. Let N = [X]+1, where [] is the greatest integer function and let θ = X/N. Note that θ ∈ [0,1] and N > Nδ. So |f(Nθ)| < δ. That is, |f(X)| < δ.

So all you need is the compactness of [0,1] and the fact that you can generate all of Real+ from [0,1] and multiplication by Natural. So it seems that is true for Complex or RealN etc. where you take x -> ∞ to mean |x| -> ∞ and you use [-1,1] instead of [0,1].

If Real itself was compact you could skip the scaling step entirely. I think rephrasing the question in terms of Real ∪ {-∞, ∞} makes it almost trivial but I must admit I'm going beyond what I can remember from my student days, I expect someone will tell me that rephrasing it like that causes something else to break.

I think it would be reasonable for a theorem prover to start by choosing a δ to aim for and use continuity to construct the cover of Real from the inverse images of (-δ, -δ). It would get stuck then and I don't know whether there is a reasonable automated bridge to the solution from there.